
 

 
   
S.A.R.A 
 

Search And Rescue Assistant 
 

Software Engineering | Group 8 

 
 

 

 

 

 

 

 

 

 

Date: May 5, 2019 
https://abhiek187.github.io/emergency-response-drone/ 

 

TEAM MEMBERS 

Sahana Asokan 

Won Seok Chang 

Avnish Patel 

Abhishek Chaudhuri 

Shantanu Ghosh 

Srikrishnaraja Mahadas 

Sri Sai Krishna Tottempudi 

Vishal Venkateswaran 

 

https://abhiek187.github.io/emergency-response-drone/


 

 

Individual Contributions Breakdown 
 

All team members contributed equally. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

2 



 

 

Table of Contents 
 

Summary of Changes 5 

Customer Problem Statement 7 

Customer Statement of Requirements 7 

Glossary of Terms 12 

System Requirements 13 

Functional Requirements 13 

Nonfunctional Requirements 14 

User Interface Requirements 15 

Functional Requirements Specification 16 

Stakeholders 16 

Actors and Goals 17 

Use Cases 18 

Casual Description 18 

Use Case Diagram 19 

Traceability Matrix 20 

Fully-Dressed Description 21 

System Sequence Diagrams 25 

Effort Estimation using Use Case Points 27 

Domain Analysis 31 

Domain Model 31 

Concept Definitions 32 

Association Definitions 33 

Attribute Definitions 34 

Traceability Matrix 35 

System Operation Contracts 36 

Mathematical Model 38 

Interaction Diagrams and Design Principles 39 

Class Diagram and Interface Specification 46 

Class Diagram 46 

3 



 

Data Types and Operation Signatures 47 

Traceability Matrix 50 

Design Patterns 51 

Object Constraint Language (OCL) Contracts 52 

System Architecture and System Design 54 

Architectural Styles 54 

Identifying Subsystems 55 

Mapping Subsystems to Hardware 56 

Persistent Data Storage 57 

Network Protocol 58 

Global Control Flow 58 

Hardware Requirements 59 

Algorithms and Data Structures 60 

Algorithms 60 

User Interface Design and Implementation 63 

Design of Tests 65 

History of Work, Current Status, and Future Work 69 

Merging the Contributions from Individual Team Members 69 

Project Coordination and Progress Report 70 

History of Work 72 

Breakdown of Responsibilities 74 

References 75 

 

 
 
 
 
 
 
 

4 



 

 

Summary of Changes 
● Updated the contributions breakdown matrix to indicate equality 

● Reorganized references and labeled points of interest with numbers 

● Added low battery alert to REQ4 

● Changed descriptions for REQ5 and REQ6 

● Added more detail about the drone and controller connection in REQ6 

● Clarified useability in nonfunctional requirements 

● Removed recoverability from nonfunctional requirements 

● Made Drone a participating actor instead of an initiating actor 

● Elaborated more on UC-6 and UC-7’s casual description 

● Indicated that UC-5 and UC-8 could be considered for future work 

● Updated the use case diagram 

● Clarified more about the descriptions for UC-1. 

● Altered main success scenario for UC-6 

● Removed fully-dressed description for UC-8 

● Recalculated the Effort Estimation section 

● Calculated duration in effort estimation 

● Changed description of responsibilities, associations, and attributes 

● Merged Calibrator onto Controller 

● Added association between the Controller and the Interface 

● Removed attributes for Controller and Notifier 

● Changed domain model accordingly 

● Added the description for the traceability matrix of the domain model 

● Removed system operation contract for ReturnToHome 

● Removed mathematical model for AvoidObstacles and added 

information about GetData 

● Removed interaction diagram for UC-8 

● Updated the Class Diagram 

● Updated the Data types and Operations Signatures subsection 

● Added the design patterns for the class diagram 

● Added the OCL contracts 

5 



 

● Changed package diagram 

● Updated the Hardware Requirements with all additional hardware 

used and any hardware removed/changed.  

● Tweaked the Mapped Hardware to Subsystems section to account for 

the Hardware Requirements section. 

● Tweaked the Algorithm section to specify the method used to calculate 

speed. 

● Removed Data Structures section 

● Updated the Algorithms Section with the algorithms that were used 

● Added old and new website design and explained why we changed the 

interface 

● Added more detail to the GetData/GetStatus test 

● Updated Project coordination and Progress report, so that it reflects 

recent work. 

 

 

 

 

 

 
 
 
 
 
 
 
 

6 



 

 

Customer Problem Statement 

 

Customer Statement of Requirements 

Search and rescue operations can often involve first responders and 

volunteers trying to cover a vast area in as little time as possible to save the 

most lives. These operations can be categorized by the environment take 

place in. They can further be categorized by the specific type of operation 

that needs to take place, such as in urban areas or in remote mountainous 

regions. The circumstances that could merit such operations could involve 

natural disasters such as earthquakes and hurricanes. Regardless of the type 

of operation, technology is being increasingly used to streamline the efforts 

of first responders and volunteers in their efforts to try to save as many 

people as possible. There have been many search and rescue missions in the 

past.​1​ Many of these missions involved the use of large amounts of people 

and resources. Even with all the effort put by the people involved many lives 

were lost in the process. One such organization that is involved in search and 

rescue operations is the Coast Guard. The table below illustrates the 

7 



 

statistics of these operations conducted by the Coast Guard from 2011 

through 2015.​2 

 

Fiscal 
Year  

Cases   Responses  Sorties   Lives Saved  Lives Lost  Unaccounted 
Lives 

2011  20,512  43,954  21,566  3,793  735  392 

2012  19,787  43,940  21,609   4,037  713   440 

2013  17,803  38,272  19,420  3,753   651  252 

2014  17,508  38,282  19,032  3,443  595  308 

2015  16,456  37,215  18,781  3,536  603  330 

 

The sheer number of cases and responses conducted by the Coast 

Guard shows how big of an issue search and rescue missions are in the United 

States.  The table also emphasizes that concept that these operations are not 

always successful or efficient. This is based on the number of lives lost and 

the number of people not accounted for along with a high number of 

responses for the cases. Our method looks into a possible alternative 

approach to these search and rescue missions. 

The Search and Rescue Assistant, or S.A.R.A., will modernize the 

techniques employed by first responders on search and rescue operations. A 

drone can cover more distance than a single person is able to. Currently, the 

8 



 

most frequently used techniques to cover a lot of areas very quickly is to 

either use a helicopter or to use a lot of people. The problem with helicopters 

is that they usually have to fly in from somewhere else and that can take time. 

Another problem with the use of helicopters is its lack of ability to search in 

narrow or tight areas. The issue with using a lot of volunteers is that people 

end up risking their own lives to find survivors. Often times these search 

parties tend to be time-consuming and depending on the circumstances, 

unorganized.​3 

Ready-to-launch drones can be set up in minutes, which will save time. 

By attaching a phone camera to the drone, the user will able to see the video 

feed that the drone is transmitting. Doing so will reduce the risk of 

potentially sending people in harm’s way to get the most accurate 

information about where people might be trapped. Additionally, this would 

also be cost-efficient. This would reduce actual labor since we would mainly 

be investing in developing an efficient algorithm, and the device. This 

algorithm would take one initial investment and would be developed for 

improvement. Due to the cost effectiveness of the device and the reusability 

of the algorithms involved, if the resources were to be available, it should be 

rather simple to manufacture multiple devices.  

9 



 

Naturally, an important aspect of an aerial vehicle of this nature is 

whether or not it can survive the challenges/harsh conditions it can face 

while in the field. To bolster S.A.R.A’s ability to withstand these conditions, it 

will be able to avoid obstructions in its’ path, in part due to the 

implementation of ultrasonic sensors. Using these sensors, and the usage of 

the primary camera, the user can easily maneuver through different 

obstacles that he/she may encounter during a search and rescue mission. To 

assist the end-user in knowing the immediate environment, a thermal 

imaging attachment will be mounted to the mobile phone that serves as the 

drone’s primary camera. Image processing will not occur on the drone itself, 

but instead on a centralized hub located back on an emergency vehicle, which 

receives relayed images/video real-time so that emergency responders can 

quickly determine the best course of action. The sensors/equipment 

necessary to accomplish this will be either be purchased or obtained by the 

team members from existing laboratories/organizations.  

Regarding the working environment, S.A.R.A. will have to be able to 

maneuver in potentially tight/enclosed spaces. In such an environment, being 

able to receive data on how close an object is to the drone is a specialized 

function ultrasonic sensors can provide. The drone can then properly take a 

10 



 

course of action based on the proximity data it receives, such as change the 

amount of thrust in a particular direction or instead start pushing in an 

entirely different direction. With regards to processing visual data, the 

S.U.R.F. identification algorithm can be used to accurately determine an 

image’s correlation/accuracy to a specific desired target object. In this case, 

the target would be the human faces/heat signatures. 

Even with many solutions to search and rescue operations, S.A.R.A. 

offers a new take on optimizing the field. One of the key priorities of search 

and rescue missions includes safety, not just for the missing people, but for 

the people involved in the rescue operation. This approach makes it easy for 

even a single person to actively investigate the search and rescue operation 

in a safe manner. There would be more focus on the actual goal of the mission 

instead of also worrying about the safety of the people working the 

rescue/search missions.  

 
 
 
 
 
 
 
 
 
 
 

11 



 

 

Glossary of Terms 

 

Database​ - Server that will keep data of the drone and pictures from the 

drone camera. 

 

UI​ - A physical program that allows the user to see the environment from the 

camera, information of the drone speed and health, and distance away from 

the objects. 

 

Controller​ - A device that will allow the user to control the drone movements 

and avoid any obstacles. 

 

Proximity Alert​ - Internal mechanism that will use proximity sensors to see if 

the drone is getting dangerously close to any obstacles in the flight path. 

 

Wireless Connection​ - The connection between the drone, controller, and 

database that allows the user to stay in control of the drone. 

 

Drone Sensors ​- Devices that allow the drones to detect its speed, distance 

from user, stability, to detect obstacles, the drone’s health, etc. Examples 

include an IR/Thermal sensor, Accelerometer, and Gyroscope. 

 

S.U.R.F.​ - Speeded Up Robust Features, an algorithm that finds key points of 

an image using Hessian Matrices and scaled space, making it simpler to 

compare different images and see if they correlate appropriately. 
 
 
 
 

 

12 



 

 

System Requirements 

 

Functional Requirements 

REQ1 - Database/Server 

REQ2 - UI Screen 

REQ3 - Controller 

REQ4 - viewDroneCondition 

REQ5 - Proximity Alert 

REQ6 - Wireless Connection 

REQ7 - GPS tracking 

REQ8 - Infrared Sensor 

Requirement  Priority  Description 

REQ1  5  Data server that will store the information from the 
drone and allow the user to access it 

REQ2  2  The user interface will allow the user to see the drones 
footage and any other relevant information 

REQ3  1  The user should be able to control the drone’s 
movements  

REQ4  4  The phone mounted on the drone will send a signal to 
the controller to notify of its operating status and alert 

the user if the battery is low. 

REQ5  1  The drone should be able to correctly identify any close 
obstacles. 

REQ6  2  A connection between the drone and controller is 
established via remote control. 

REQ7  2  The user will be able to know exactly where the drone is. 

REQ8  3  This sensor will allow the user to detect heat signatures 
through any material walls 

13 



 

 

Nonfunctional Requirements  

 

Usability​ - User will figure out the user-friendly interface for viewing the 

drone by labeling buttons, displaying drone data, and requiring very little 

taps on the screen. 

 

Security ​- User will be able to use the interface without having to jeopardize 

his/her safety by using the drone from a reasonable distance.  

 

Accessibility​ - The user will be able to run the software to operate the drone, 

on any smartphone regardless of the OS on the device. 

 

Efficiency​ - User will be able to use the software with any accompanying 

hardware through a wireless connection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14 



 

 

User Interface Requirements 

 

Requirement  Priority  Description 

REQ1  1  The controller for the drone will have a live feed of what 
the camera is seeing 

REQ2  3  It will also display various properties of the drone. Some 
properties include the speed of motors, drone battery 
level, and current location 

REQ3  2  Proximity alerts will be sent to the controller so the user 
knows which direction to avoid 

REQ4  4  The operating status of the drone will be sent to the 
controller so the user will know if they have to pull the 
drone back in case of low battery level. 

 

 
Image 1​4 

15 



 

 

Functional Requirements Specification 

 

Stakeholders 

Stakeholders 

- Licensed User 

- First Responders 

- Police Officers 

- Authorized Volunteers 

- Firefighters 

- EMT’s 

- Emergency Dispatchers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

16 



 

 

Actors and Goals 

Actor  Type  Actor’s Goal  Use Case Name 

User  Initiating  To control the drone.  MoveDrone (UC-1) 

User  Initiating  To view a live video feed of 
the drone. 

ViewCamera (UC-2) 

User  Initiating  To get the drone’s current 
location. 

GetLocation (UC-3) 

User  Initiating  To get the drone’s operating 
status. 

GetStatus (UC-6) 

First Responder  Initiating  To identify the emergency 
from the drone. 

ViewCamera 
(UC-2), 

GetStatus  (UC-6) 

Drone  Participating  To move based on user input.  MoveDrone (UC-1) 

Sensors  Participating  To locate nearby objects.  CheckObstacles 
(UC-4), 

AvoidObstacles 
(UC-5) 

GPS  Participating  To track the current location 
of the drone. 

GetLocation (UC-3) 

Server  Participating  To store all of the data that 
the drone has obtained. 

getData (UC-7), 
GetStatus (UC-6) 

 
 
 

17 



 

 

Use Cases 

 
Casual Description 
 

Use Case Name  Description  Requirements 

MoveDrone (UC-1)  The user can move the drone 
using the controller. 

REQ3, REQ6 

ViewCamera (UC-2)  The user can view a video of the 
drone via the phone’s camera. 

REQ2 

GetLocation (UC-3)  The user can detect the drone’s 
location using GPS. 

REQ2, REQ7 

CheckObstacles (UC-4)  The drone can detect obstacles 
in its path. 

REQ5, REQ8 

AvoidObstacles (UC-5)*  The drone can avoid obstacles 
based on its surroundings. 

REQ5, REQ8 

GetStatus (UC-6)  The user or a first responder can 
check the current state of the 

drone, such as its power level or 
the phone’s battery life. 

REQ1, REQ2, REQ4 

GetData (UC-7)  The user can check all of the 
data that the drone is 

transmitting through the 
sensors. 

REQ1, REQ6 

ReturnToHome (UC-8)*  The drone can safely autopilot 
back to the home (controller) in 
case the connection is lost. The 
user will know the drone’s last 

location until it gets back. 

REQ5, REQ7, REQ8 

*This can be considered for future work. 

18 



 

 
Use Case Diagram 

 

 

 

 

 

 

 

 

 
 
 

19 



 

 
Traceability Matrix 

 

Requirements  Priority  UC-1  UC-2  UC-3  UC-4  UC-5  UC-6  UC-7  UC-8 

REQ1  5            x  x   

REQ2  2    x  x      x     

REQ3  3  x               

REQ4  4            x     

REQ5  1        x  x      x 

REQ6  2  x            x   

REQ7  2      x          x 

REQ8  3        x  x      x 

Total  
Priority 

-  5  2  4  4  4  11  7  6 

 
The traceability matrix above shows the relationship between the use cases 

and the functional requirements.  It also ranks each of the use cases based on 

which use cases we believe have a higher priority. The matrix also ranks the 

priority of the requirements by what we think are the most important 

features for the drone to have. The way the matrix works is that each 

requirement has a set priority and if a use case incorporates a requirement; 

the priority points of the requirement are added to the use case. The priority 

points of each use case are the sum of the requirements for that use case. For 

example, use case 6 has a priority of 11 which comes from REQ1 (5), REQ2 

(2), REQ4 (4). If the there values of the requirements are added together, you 

get the priority of use case 6 which is 11. 

 
 

 

20 



 

 
Fully-Dressed Description 

 
Use Case 6:  GetStatus 

 

Related Requirements: REQ1, REQ2, REQ4 

 
Initiating Actor: Drone 

 
Goal:  To get the drone’s operating status  

 
Participating Actor: Server 

 
Preconditions: A signal between the drone and the 

controller is available 

 

Postconditions: Allows the user to know if the drone  

is active or not. 

 

Main Success Scenario: 
1. The user will know how much power the drone 

is using. 

2. The user can see the phone’s battery level and 

is alerted whenever it drops below 20%. 

 
 

Use Case 7:  GetData 

 

Related Requirements: REQ1, REQ6 

 
Initiating Actor: User 

 

21 



 

Goal:  Collect data on the various operations  

of the drone  

 
Participating Actor: Server 

 
Preconditions: Drone is on and a connection between  

the drone and controller is established. 

 

Postconditions: Allows the user to manipulate and store that 

data.  

 

Main Success Scenario: 
1. The user can adjust motors speeds based on 

collected data. 

2. The user uses the controller to move the drone 

if needed based on altitude. 

 

 
Use Case 1:  MoveDrone 

 

Related Requirements: REQ3, REQ6 

 
Initiating Actor: User 

 
Goal:  Ability to move the drone using a controller  

 
Participating Actor: Drone, Controller 

 
Preconditions: Drone is available 

Controller is Available 

Postconditions: Allows the user to maneuver the drone using  

a controller and a camera 

 

22 



 

Main Success Scenario: 
1)  The user sets the drone on the field. 

2) The user uses the controller to test the 

drone’s ability to move. 

3) The controller will send signals to the 

drone which will allow the user to control 

and move it. 

 
 
 
 
 
 
Use Case 3:  Get Location 

 

Related Requirements: REQ2, REQ7 

 
Initiating Actor: User 

 
Goal:  Ability to detect the current location of  

drone 

 
Participating Actor: Drone, Controller 

 
Preconditions: The GPS is on and in a working condition. 

The connection between the drone and  

the controller is stable. 

 

Postconditions: Allows the user to retrieve the current  

location of drone displayed on the controller. 

 

Main Success Scenario: 1)The controller receives the GPS signal from 

the drone. 

23 



 

2) The user can see the current location of the 

drone. 

 
 

Use Case 4:  CheckObstacles 

 

Related Requirements: REQ5, REQ8 

 
Initiating Actor: Drone 

 
Goal:  To enable drone to detect obstacles in its  

path. 

 
Participating Actor: Sensors 

 
Preconditions: The sensors are on and in a working  

condition. 

The physical mechanism of the drone is  

undamaged and operable. 

 

Postconditions: Allows the drone to detect obstacles that can 

possibly damage or interrupt its mission. 

 

 

Main Success Scenario: 1)The sensors built on drone detect  . 

2) It alerts the user, thus the user can 

maneuver the drone. 
 
 

24 



 

 

System Sequence Diagrams 

 
Use Case 1: MoveDrone 

 
Use Case 6: GetStatus 

 

25 



 

Use Case 7: GetData 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

26 



 

 

Effort Estimation using Use Case Points 
 

  Use case Points 

UUCP=UUCW+UA
W 

108 

TCF  .955 

UCP = UUCP × TCF   103.14 

 

UAW 

Simple=1 

Average =2 

Complex = 3 

 
 

Actor Name  Description of 
Relevant 
characteristics 

Complexity  Weight 

User  To control the 
drone 

Complex  3 

User  To view a live video 
feed of the drone 

Complex  3 

User  To get the drone’s 
current location 

Simple  1 

Drone  To check for and 
avoid obstacles 

Complex  3 

User  To get the drone’s 
operating status 

Simple  1 

First Responder  To identify the 
emergency from the 

drone 

Simple  1 

27 



 

Sensors  To locate nearby 
objects 

Average  2 

GPS  To track the current 
location of the 

drone 

Average  2 

Server  To store all of the 
data that the drone 

has obtained 

Average  2 

 

UAW​(home access) = _3 * Simple + 3_ * Average + 3_ * Complex = 18 

 

UUCW 

Simple=5 

Average =10 

Complex = 15 
 

Use Case  Description  Category  Weight 

MoveDrone (UC-1)  The user can move 
the drone using the 

controller. 

complex  15 

ViewCamera (UC-2)  The user can view a 
video of the drone. 

complex  15 

GetLocation (UC-3)  The user can detect 
the drone’s location 

using GPS. 

average  10 

CheckObstacles 
(UC-4) 

The drone can 
detect obstacles in 

its path. 

complex  15 

AvoidObstacles 
(UC-5) 

The drone can avoid 
obstacles based on 

its surroundings. 

complex  15 

GetStatus (UC-6)  The user or a first 
responder can 

check the current 

simple  5 

28 



 

state of the drone 
based on the 
emergency. 

GetData (UC-7)  The user can check 
all of the data that 

the drone is 
transmitting. 

complex  15 

 

UUCW​ = 1_ *Simple + _1 * Average + _5 *Complex = 1x5+1x10+5x15= 90 

 

TCF 
 

Technical 
Factor 

Description  Weight  Complexity  calculations 

T1  Distributed web-based 
System 

2  5  10 

T2  Performance objectives  2  3  6 

T3  End-user efficiency  2  4  8 

T4  Reusable code and 
design 

1  2  2 

T5  Easy to use  0.5  1  .5 

T6  Moderately difficult to 
change 

1  3  3 

T7  Range of operation  1  3  3 

T8  Signal Strength  1  3  3 

 

TCF=C1+C2x Technical Factor Total=35.5 

 

C1=0.6, C2=0.01, Technical Factor Total= 

29 



 

TCF= .955 

Duration = UCP*PF = 103.14*28 = 2887.92 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

30 



 

 

Domain Analysis 

 

Domain Model 

 

 

The domain model is derived from the concepts, attributes, and associations 

from all the use cases and requirements. 
 

 

 
 
 
 
 
 
 

31 



 

 
Concept Definitions 
 

Rs#  Responsibility Description  Type  Concept Name 

Rs1.  Coordinate the actions that the user wants the drone 
to take. 

D  Controller 

Rs2.  Shows the physical data of the drone along with a live 
camera feed on a website. 

K  Interface 

Rs3.  Establishes a remote connection between the 
camera of the drone and the controller. 

D  Connector 

Rs4.  Renders the data onto the website.  K  Page Maker 

Rs5.  Calculates the speed, battery life and the location of 
the drone. 

D  Dynamic Data 

Rs6.  Notifies the user of potential issues such as low 
battery or obstacles. 

D  Notifier 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

32 



 

 
Association Definitions 
 

Concept Pair  Association Description  Association name 

Page Maker ↔ 
Interface 

The Page Maker prepares the logic for the 
Interface 

Display 

Dynamic Data ↔ 
Notifier 

The Dynamic Data informs the Notifier if 
there are any issues that the user needs to 
know. 

Create Alerts 

Connector ↔ 
Controller 

The Connector makes sure that the inputs 
given by the user with the Controller are 
properly executed with minimal latency. 

Sync IO 

Dynamic Data ↔ 
Page Maker 

The Page Maker records the physical data of 
the drone on the website. 

Record Data 

Notifier ↔ Page 
Maker 

The Notifier sends the alert information to the 
Page Maker 

Send Alerts 

Controller ↔ 
Interface 

The movement of the drone by the Controller 
is picked up by the Interface’s live video feed. 

Convey Movement 

 
 
 
 
 
 
 

 
 

 
 
 
 
 

33 



 

 

 
Attribute Definitions 
 

Concept  Attributes  Attribute Description 

Interface  Drone data 
 
Drone camera 
feed 

Used to show the user the drone’s physical data. 
  
Will show the user a physical view of the live 
camera. 

Controller  Input direction  Up, down, left, right, forward, and back. 

Page Maker  Data list  Data that will be rendered on the website. 

Dynamic Data  Speed 
Battery life 
Location 

Will look for specific types of drone data such as 
speed, battery life and the location of the drone at 
all times. 

 
 
 
 
 
 
 
 

 

 

 

 
 

 
 

34 



 

 
Traceability Matrix 
 

    Domain Concepts 

Use 
Cases 

Priority 
Weight 

Interface  Controller  Connector  Page 
Make
r 

Dynamite 
Data 

Notifier  Calibrato
r 

UC-1  5  x  x          x 

UC-2  2  x      x       

UC-3  4      x    x     

UC-4  4            x   

UC-5  4    x          x 

UC-6  11      x  x  x  x   

UC-7  7  x    x    x    x 

UC-8  6    x        x   

 
 
 
 
 
 
 
 

 

 
 
 

35 



 

 

System Operation Contracts 

 

Operation  MoveDrone 

Preconditions  ● Drone is available 
● Controller is available 
● Application is open 
● The physical mechanism of the 

drone is undamaged and operable 

Postconditions  ● Allows the user to maneuver the 
drone using a controller and a 
camera 

● Get visual feedback about the 
movement 

 

Operation  GetLocation 

Preconditions  ● The GPS is on and in a working 
condition 

● The connection between the drone 
and  
controller is stable 

Postconditions  ● Allows the user to retrieve the 
current  
location of drone displayed on the 
webpage 

 

Operation  CheckObstacles 

Preconditions  ● The sensors are on and in a working  
condition 

● The physical mechanism of the 
drone is undamaged and operable 

Postconditions  ● Allows the drone to detect 
obstacles that can possibly damage 

36 



 

or interrupt its mission using the 
sensors. 

 

Operation  GetStatus 

Preconditions  ● A signal between the drone and the 
controller is available 

Postconditions  ● Allows the user to know if the 
drone is active or not 

 

Operation  GetData 

Preconditions  ● The drone is on and a connection 
between the drone and controller is 
established 

Postconditions  ● Allows the user to manipulate and 
store that data. 

● Get webpage of data 

 

 

 

 

 
 
 
 

 
 

37 



 

 

Mathematical Model  

The drone will be calibrated to use math in order to move and avoid 

obstacles. This model is correlated with UC-1 and UC-7. 

 

UC-1 (MoveDrone):​ A controller is used to move the drone. The user can 

control to rotate, move forward/backward, throttle, and strafe the drone. 

This will involve adjusting the speed of motors to change the velocity and 

angle of the drone. 

 

UC-7 (GetData):​ The user will be able to retrieve the battery level, speed, 

and position of the drone. These values will be updated in real time via the 

drone’s wireless connection. The speed is calculated by taking the latitude 

and longitude, and when it updates, calculate the distance divided by the time 

it took to update.  

 

 

 

 

 

 

 

 

 

 

 

38 



 

 

Interaction Diagrams and Design Principles 
 

Use Case 1: MoveDrone 

 
The diagram for the first use case is displayed above. In this case, the User 

will first activate the system in order to gain access to the webpage. From 

there the user will use an RC controller to manually control the actions of the 

drone.  

Design Principles: 
The design principles utilized in this use case include the Low Coupling 

Principle. This design principle is utilized as the communication links that 

exist are very short. Most of the communication is done between the User 

and controller, and then the controller and drone. 

In this use case diagram, the controller could act as the publisher while the 

drone will act as the subscriber. The user utilizes the controller to send 

events to the drone which will work if it has received a valid event. 

Alternative Solutions: 
We originally planned to have the user control the drone using the webpage 

by having control buttons on the webpage. This idea was scrapped because 

39 



 

there would be a great amount of latency introduced onto the system. Using 

the RC controller will mitigate the total latency and improve overall 

performance. 
 
 

Use Case 3: GetLocation 

 
The diagram above demonstrates the interactions between classes in UC-3: 

get the location. Once the user has control of the drone and being able to 

maneuver around obstacles. First, the user sends a request to get the 

location of the camera mounted on the drone to the controller which then 

gets requests it to the phone. The phone then requests the coordinates to the 

GPS server and gets the coordinates and sends it back to the controller to 

make it visible. The user sees the phone’s location based on longitude and 

latitude. The location of the phone was then updated by repeatedly getting 

requests to update the location. If the location every changed then the new 

location was then presented to the user, otherwise, the old location will still 

be shown to the user. 

 
 

40 



 

Design Principles:  
The design principles employed in the process of assigning responsibilities 

were the expert doer principle and high cohesion principle. The expert doer 

principle is used because each of the classes is an expert for specific 

functions. An example, the phone is responsible for getting the coordinates 

from the GPS server and relaying it back to the controller for the user to see.  

 
This use case diagram will also work with the publisher-subscriber design 

pattern. The controller will act as the publisher while the phone and the GPS 

act as the subscribers. The controller will send a request to update the 

current GPS location of the phone to the GPS, which in turn will verify the 

location of the drone and then return the coordinates. 

 

Alternative Solutions: 
The original idea to get the location was to use the drone but that was 

scrapped in favor of using the phone. This is because the phone had a built-in 

GPS, which we were able to access in order to get the location of the phone. 

The phone is going to be mounted onto the drone so the location of the 

phone is also going to be the location of the drone as well.  
 

 
 
 
 
 
 
 
 
 
 
 
 

41 



 

Use Case 4: CheckObstacles 

 

 
The way that the diagram above is implemented is that the user is able to get 

an alert that an object is a certain distance away. The sensors on the drone 

are able to locate objects that are close to the drone. If an object is under a 

certain distance then the user should get an alert saying that there is an 

object a certain distance away from this one sensor. 

 

Design Principle: 
The design principle for this use case is the expert doer principle and high 

cohesion principle because the parameters for the obstacle is super specific. 

And that data should be focused on because it can affect the overall behavior 

of the drone. It is also important that the specific obstacles that are being 

checked for are being communicated to other sources. 

 

Alternative Solutions: 
The original implementation for this use case was to have sensors all over the 

drone that would be able to detect objects in any direction. This idea was 

replaced by having a sensor on the left and right sides of the drone. This was 

done in order to reduce the possibility of a false reading from another drone. 

42 



 

This could happen as the echo from one sensor was picked up by another 

sensor, which could occur in confined environments. The user is able to see in 

front of the drone and behind the drone due to the front and rear-facing 

cameras. Their only blind spots would be on their peripherals. This could be 

solved by having a sensor on the right and left-hand sides, which will be able 

to detect any objects. 
 

 
Use Case 6: GetStatus 

 
 

The interaction diagram for use case 6 is displayed above. The drone basically 

sends a signal to the system which the user can see the result of through the 

controller. The part of this use case is to let the user know of the operation 

status of the drone, in particular, the battery level. The user is also able to 

view the past values sent by the drone. 

 

Design Principles: 
The design principles utilized by this use case are Expert Doer Principle, High 

Cohesion Principle, and the Low Coupling Principle. Since this use case is the 

only use case that knows about the battery status it makes sense that the 

43 



 

Expert Doer Principle is used. As for the High Cohesion Principle, the only 

computation done by this part is the battery level. The Low Coupling 

Principle deals with the concept that this use case does minor 

communication between the drone and the controller. 

 

Alternative Solution: 
Originally we had planned to show the battery level of the drone on the 

webpage. This idea was replaced as soon as we came to utilize the RC 

controller. The reason for this is because the RC controller has a warning that 

will automatically inform the user when the battery of the drone is low. So 

instead we replaced the battery of the drone with the battery level of the 

phone. This is because the user will then be able to know that they need to 

pull back the drone and replace the phone counted camera. The phone is 

being utilized for many purposes so it is important to know how much charge 

is left on the phone. 
 
 

Use Case 7: GetData 

 
The diagram above demonstrates how the user, controller, and drone 

interact with each other to show necessary data of drone to the user, so the 

44 



 

user can control the drone. When the system needs data, the drone sends the 

data that is saved on it to the controller upon the request by the controller. 

When the controller receives the data, it displays it on the webpage, so the 

user can see the data and make necessary judgments of controlling the 

drone. The user will verify its execution by the updated live-feed. 
 

Design Principles: 
The design principle of this use case is High Cohesion Principle. There is more 

focus on displaying the necessary data and sending instructions to drone to 

control it, rather than having a high responsibility of computing data. 
 
 
 

Alternative Solutions: 
The original idea to get the data was to refresh the data every few seconds 

and sent that to the user via the web page. This was eventually changed to 

send the data only when something changes. For example, the location is only 

to update and be sent to the webpage when the system notices that the 

current location of the phone has changed. This idea was implemented 

because it makes sense to inform the user of any changes in the data received 

as that informs the user that something is happening. 

45 



 

 

Class Diagram and Interface Specification 

 

Class Diagram 

 

 

 

 

 

 

46 



 

 

Data Types and Operation Signatures 

1. Controller: ​The main role of this class is to use the help of the other 

classes to maneuver and utilize the drone.  

Operations  

1. power(): This function turns the drone on and off. 

2. returnToHome(): The drone returns to where it was launched 

Attributes 

1. isOn: Boolean -It has a value of true or false depending on if the 

drone is on or not. 

 

2. Data: ​The system class mainly deals with the inner mechanisms of the 

drone and its operational status. 

Operations 

1. showPosition(position: Object) - Void: Get the position of the 

drone by reading the device’s data.  

2. getSpeed(lat: double, lat2: double, long: double, long2: double) - 

Double: Get the speed of the drone by using the device’s location 

to calculate speed.   

3. updateBatteryStatus(battery: Object) - Void: Get the battery 

status from the camera device on the drone.  

47 



 

4. loadData() - Double: The point of this function is to get the data 

from the sensors. 

Attributes 

1. battery: Double - The amount of battery life left on the drone. 

2. speed: Double-The speed of the drone in meters per second. 

3. distanceRight: Double - The distance from the right sensor to the 

measured object. 

4. distanceLeft: Double - The distance from the left sensor to the 

measured object. 

5. tries: Integer - The number of times it took before the location 

was able to update. 

 

3. Display: ​This class is mainly responsible for showing and updating the 

graphical user interface.  

Operations 

1. gotDevices(deviceInfos: Object[]) - Void: Allows the webpage to 

access multiple cameras on the device if there are any.  

2. getStream() - Void: Sets up the drop down menu for the video 

menu. 

3. gotStream(stream: Object) - Void: Sets up the video feed. 

4. handleError(error: String) - Void: Prints any error that comes 

with displaying the video feed. 

5. toggleVideo() - Void: Switches the camera feed from being visible 

to not being displayed and vice-versa. 

48 



 

Attributes 

1. deviceInfo: String Array - List of all compatible devices. 

2. option: String - Text that shows the drop-down menu. 

 

4. GPS: ​The class GPS is used to implement the location component of the 

drone. The functions of this class are displayed below. 

Operations 

1. getLocation()- This uses the GPS to get the location of the drone 

in the form of latitude and longitude. 

 
Attributes 

1. lat: double - The current latitude of the drone. 

2. lat2: double - The past latitude of the drone. 

3. long: double - The current longitude of the drone. 

4. long2: double - The past longitude of the drone. 

 
 
 

 
 

 
 

49 



 

 

Traceability Matrix 

Domain 
Concepts/ 
Software Class 

Controller  Data  Display  GPS 

Controller  X       

Interface    X  X   

Connector  X  X    X 

Page Maker      X   

Dynamic Data    X    X 

Notifier    X  X   

Calibrator  X  X     

 
The software classes were developed from the domain concepts based on the 

required functionality of each domain concept. The core functions of the 

drone involved movement, operational status, user interface, and location. 

Each of these core functions represents a software class. So the traceability 

matrix above represents how each of the domain concepts corresponds to 

the core functions of the drone i.e. the software classes. 

 

 

 

 

 

 

 

50 



 

 

Design Patterns 

One of the design patterns that is mainly used in our code is the 

publisher-subscriber pattern. This is based of event like structure. So if a 

certain event occurs, a certain part of the code runs. Some events that occur 

in our code is permission requirements from the user. So in order to run the 

location and camera feed the user need to grant permission to the program. 

This style of coding allows us to add more components in the future if we 

decide to do so. This also allows us to change the “publisher” if we need to for 

various events and we can also add “subscribers” as well.  

 

The publisher-subscriber model is predominantly used in aspects of the 

interface that are constantly updating. This include the speed, location, 

camera feed, sensor data, and battery levels. Each of these are event based, 

and each event leads to a possible update of the attributes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

51 



 

 

Object Constraint Language (OCL) Contracts 

Invariants 
● The browser the user is using needs to support Javascript and support 

HTML5 video. It also needs to be able to support the functions in the 

code. 

● The battery level that is going to be displayed is always going to be 

greater than 0. 

○ Context controller: getBattery() 

○ label.textContent = `${Math.round(battery.level*100)}%`; 

● The user must have a good wireless connection between the Pi and the 

device that is in use. The connection should preferably be at a 

frequency of 2.4 GHz.  

● The Raspberry Pi will always be powered on, upon starting the flight 

and will thus give readings within the range of ~ 2 cm to 200 cm. 

 

Preconditions 
● To execute get location, the code needs to make sure the user allows 

their location to be accessed 

○ Context: controller-getlocation() 

○ Pre: if (navigator.geolocation) 

● In order to view the camera feed of the device, user permission must be 

granted. 

○ Context: controller-getdevice() 

○ Pre: navigator.mediaDevices.enumerateDevices() 

 .then(gotDevices).then(getStream).catch(handleError); 

● In order for the program to output a distance between the drone and 

the object, the distance has to fall under the threshold distance of 2 m. 

 

 

 

52 



 

Postcondition 
● The post condition for the speed is the location. If the location has been 

updated then the speed will also update. If it has not been updated then 

it will not update. 

○ Context: ​velocity​=​getSpeed​(lat,lat2,long,long2) 

○ Post: if(lat === lat2 && long === long2) 

● The post condition for the power button is to toggle the videofeed. If 

the feed is currently visible it will turn it off. If it is not visible it will 

show the video feed. 

○ Context: controller-togglevideo() 

○ Post: document.querySelector('.fa-power-off').onclick = 

toggleVideo; 

● A post condition for the sensor reading is the automatic updating of a 

text file in 1 second intervals to update the distance measured. If this 

doesn’t happen, then the precondition has not been met yet.  

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

53 



 

 

System Architecture and System Design 

 

Architectural Styles  

 

REST:​ Since all the information about the drone is displayed on a website 

using HTML, it complies with a RESTful API. The video feed and physical 

drone data are gathered from servers controlled by other subsystems and 

represented as hypertext. 

 

Client/Server:​ The client is the person controlling the drone and the server is 

the information picked up by the drone. When the user wants to throttle the 

drone, for instance, a request is sent to the drone’s motors to move up or 

down, which then responds with movement seen by the live video feed. 

 
Layered:​ Certain services of the drone depend on each other. For example, 

getting the current location of the drone is initiated by the controller, which 

depends on the drone requesting its location, which depends on the 

coordinates returned by the GPS. 

 
Uniform interface:​ All resources should be reachable from any devices. It 

should not be limited to only one device. The website should be simple but 

effective. 

 
 
 
 
 

 
 

54 



 

 

Identifying Subsystems  

 

 
The ImageProcessing package contains the Video class for displaying the live 

video feed. It imports the LocationData and PhysicalData in order to display 

those on the website. 

The LocationData package has a GPS class to request its location and use it 

to calculate the speed of the drone. 

The PhysicalData package contains the DroneData class to display the 

operating status of the drone. It imports the Obstacles Package to retrieve 

the sensor data. 

The Obstacles package has classes for each of the two sensors. They each 

return the distance from their nearest object. 

 
 
 

 
 

55 



 

 

Mapping Subsystems to Hardware 

1. Physical Data 
The majority of the hardware for physical data will incorporate the 

Raspberry Pi, which will send the required signals to the software 

component. The motors will also be involved when it comes to the detection 

of speed. 

2. Image Processing 
The hardware needed for this substem will include a camera inside a 

phone that will be mounted to the drone. The mobile device is going to be a 

Samsung Galaxy S4. The rear camera is a ​13.0 MP autofocus camera with 

LED flash, with a Sony ​IMX091PQ sensor. We are also using an infrared lens 

to be able to detect people. With the added thermal sensor called 

SeekThermal Compact, we were able to also include another feed of the 

phone with thermal imaging capabilities.  

3. Obstacles 
The hardware that is mapped from the Obstacles’ subsystem is the 

ultrasonic sensor that will be attached in multiple locations around the 

drone. The model of the ultrasonic sensor that is going to be used is 

HC-SR04.  

4. Location Data 
The mapped hardware for the Location Data subsystem would be the 

GPS, which is inside the smartphone that is mounted to the drone.  
 
 
 
 
 
 
 
 
 

56 



 

 

 

Persistent Data Storage 

The drone will be equipped with Raspberry Pi. Even with the drone powered 

off, this system will be capable of saving any data from previous flights. 

However, this data can be transferred to another system since it is 

unnecessary for the drone to carry all the data from previous flights. But, 

during regular flight time, the drone will be overwriting data to a text file 

constantly, which will be read by the webpage. The overwriting of the data 

allows the webpage to not read through too much data.  

 

Another form of data storage is the image component of the drone. Even 

though it is a live feed, it will require some form of data storage through 

cache memory. This is due to the fact that the image will be required to be 

transferred from one device to another. This also applies to the thermal 

imaging software that will be installed on the device that acts as the camera 

on the drone. Similarly, the ultrasonic sensor will also have a cache data 

component. The ultrasonic sensor will have to transmit the distance between 

the drone and any obstacles to the controller. This data does not need to be 

stored for a long time but is still required if any action is needed to be taken 

by the drone. 

 
 
 
 
 
 
 
 
 
 
 
 

57 



 

 

 

Network Protocol  

 

For managing the network that our system will make use of, the HTTP 

communication protocol will be utilized. This was chosen because the data 

that is being transmitted ends up as part of a browser-based display, for 

which HTTP can be used for simpler client-server interactions. The webpage 

that the drone operator sees requires data regarding the drone’s location 

(GPS), the live camera feed, and other drone-related physical data (battery 

level, speed, etc.). These need to be delivered across the drone’s connection 

to the operator’s device, which naturally calls for a web-based 

communication protocol layered around the TCP/IP. 

 

 

Global Control Flow  

Our project can be noted as both procedure-driven and event-driven. The 

reason behind this is because initially, the same steps have to be taken to 

initially operate the drone however it is mainly an event-driven system 

because the case for why this drone is being used is different. There are a lot 

of situational factors so the user must generate a different series of actions in 

a different order depending on the specific case we are looking at.  So it is 

mainly event-driven because it is very unlikely that the same steps will be 

taken in the same order for more than one event. 

Our system is an event response type with concern for real-time. Since it is 

real-time, it is not periodic. It is not periodic because the time differs for 

different situations. There are no time constraints for each case because we 

don’t know how long each case would take. 

58 



 

 

 

Hardware Requirements 

The access to control the drone can be done through any 

touch-enabled device with an internet browser such as a smartphone or 

tablet. The device requires a minimum of 1 GB since to process the live-feed 

video from drone smoothly. There will also be a camera mounted on a phone 

that is placed on the drone in order to capture video. The camera should be 

able to record steady 1080p video. This can be done by using any phone 

camera that is better than or equal to that of the Samsung Galaxy S4, which 

has an image sensor from Sony called IMX091PQ. In addition, the phone will 

also have thermal imaging sensor attached to the mounted phone. This can 

read temperature differences from -40 ℉ to 626 ℉. The camera will also have 

a viewing angle of 36° and a maximum viewing distance of 1000 ft. The 

exterior of the drone will have a Raspberry Pi mounted underneath the 

drone. The device that will process the live-feed from the camera has to have 

a colored display of a resolution of at least 1920 x 1080 to allow the user to 

see where the drone is clearly. This can be done with any modern display 

devices like smartphones or tablets. Because of the quality of the image that 

is transmitted from the camera on the drone, the connection between the 

controller and the drone has to operate smoothly, with relatively low latency. 

The wireless connection bandwidth is a 2.4 GHz connection. The 2 HC-SR04 

ultrasonic sensors we used were utilized in conjunction with a Raspberry Pi. 

The sensors have to be connected to the GPIO pins on the PI through jumper 

wires. The jumper wires had to be male to female connectors, where the 

female connectors would go to the Pi and the male connectors connect to the 

channels on the breadboard which the ultrasonic sensor is mounted on. The 

Raspberry Pi model that was used was a model 3B that had an onboard 

802.11n WLAN adapter. The Raspberry Pi needs to be powered by a 5.1 V 

power source up to 2.5 mA of current. This can be done by using a power 

bank/portable battery pack that can output the desired voltage and current.  

59 



 

 

 

Algorithms and Data Structures 

 

Algorithms 

The main factor of this project is to have a safe and efficient flight for 

the drone. The drone will not be capable of performing tasks such as search 

and rescue if the drone is not durable. To accomplish this goal is to control 

the velocity of drone and locate any obstacles on its way. Calculating the 

velocity and distance between the drone and obstacles involve complex 

algorithms. 

The velocity of the drone can be calculated by using the formula that 

states that . The variable v will stand for velocity, a will stand forv = a * t  

acceleration, and time stands for time. Of course, though, we will have to 

account for other factors such as thrust and pitch for when we are going over 

the drone’s movements. The total amount of thrust is going to be equal to the 

following equation. 

.t F t0 ) dF =  * ( V max
V max−V − F  

F​D​ is the drag force. 

F​t0​ is the force of thrust when the velocity is at 0 meters/second. 

F​D​ .5 d (A(f ront) os(P (max) (motor))) A(top) in(P (max) (motor)))]  = 0 * ρ * C * [ * c − P + ( * s − P * v2  

For the above equation, the constant  is going to be equal to the density of ρ  

air, while the constant C​d​ is equal to the drag coefficient. The variable P​motor​ is 

the pitch of the motor, while P​max​ is the maximum pitch the drone is able to 

achieve without losing altitude. 

P​max​ = os ( )c −1 m
T0  

The variable m is equal to the mass of the drone and the variable T​0​ is equal 

to the total thrust of the drone.   

60 



 

When the ultrasonics sensors recognize any obstacles, the drone needs 

to know where the obstacles are. The drone is equipped with two ultrasonic 

sensors. The two sensors should locate the exact location of obstacles and 

alert the user if necessary, so the user can maneuver the drone. They are 

placed on the right and left sides of the drone to cover the blind spots that 

the primary drone camera cannot cover. This can be also used in the function 

such as “return to home” when the drone autonomously returns to the base. 

The distance between two points can be calculated based on the pulse 

sent by the trigger pin on the sensor. The trigger pin sends a 10 µs TTL, 40 Hz 

pulse toward the object that the sensor has to measure with respect to. The 

code is designed to calculate the distance by timing how long the pulse sent, 

takes to return to the echo pin. This time is then divided by 2 since the 

distance to an object is a   calculation. In addition, we also know the speed of 

sound in air to be 343 m/s or 34300 cm/s. The latter will be used because the 

Pi measures the distances by default in centimeters. So, considering we now 

know the speed and the time it takes for the pulse to reach the measured 

object, we can now solve for distance. Using a simple physics kinematics 

equation we can see that: 

  v    0.5 4300 cm/s    7150 cm/sd OBJECT =  SOUND × t ⇒ d OBJECT =  × 3 × t ⇒ d OBJECT = 1 × t  

The speed can be calculated by using latitude and longitude. This is first 

done by utilizing the ​Haversine Formula​ to get the distance between two 

points given latitude and longitude. This could be done by the following 

formula: distance = 2*r* . √sin ( ) os(lat1) os(lat2) in ( )2
2

lat2−lat1 + c * c * s 2
2

long2−long1  

This distance was then divided by the number of tries the system attempted 

to get a new location to get the speed of the drone. 

However, since the drone is equipped with the ultrasonic sensors, it 

can use the time it took for an ultrasonic wave to travel to an obstacle to 

calculate the distance between them. The equation will be, 

.istance to object d =  2
time  speed*  

Time is divided by two since the time it took is an ultrasonic wave is to 

be emitted and reflected back to the drone combined. Only one way is 

needed. 

61 



 

Speed is the speed of the ultrasonic wave, which will be 340 

meters/second in the air. Since the speed of the ultrasonic wave is 

significantly greater than the speed of the drone, that speed of drone can be 

ignored in the calculation. 

 

If the distance is less than a safe distance, the user will notice the drone 

through the alert on screen and will be able to maneuver. It is very important 

that our algorithm is consistently checking this distance because it can alert a 

safety issue if needed.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

62 



 

 

User Interface Design and Implementation 
The design of our user interface went through several revisions since its 

inception. 

 
Our initial mock-up 

 

Since we didn’t follow through with our plan to make the website a 

controller, we got rid of the controller inputs and rearranged all the other 

data so that the video feed can take up as much room as possible. That way, 

the user can have a good field-of-view when navigating the drone through 

obstacles. This new redesign minimizes the user effort while browsing the 

website and makes the interface easy to understand to anyone wanting to 

view the drone’s flight. 

63 



 

 

Our final design (video off) 
 

The user can access this site at: 
https://abhiek187.github.io/emergency-response-drone/1_code/controller/control.html 
If the user bookmarks this site, it will only take 1 button press to load this 

page. The user can then change the video source through a dropdown menu 

(requiring 2 button presses) and power the drone video on and off (1 button 

press). All the other features will change based on external events. The 

battery level mimics the device’s battery level and will alert the user if it 

drops below 20%. The speed changes based on the change of location in 

latitude and longitude. To the right is sensor data from the Raspberry Pi’s 

ultrasonic sensors. They can detect the distance of their closest objects and 

update their data in real time (assuming the user has a connection to the 

Raspberry Pi). The user will be alerted if an object is less than a foot away. 

 
 

64 

https://abhiek187.github.io/emergency-response-drone/1_code/controller/control.html


 

 

Design of Tests 
 

A. 
Types of tests: 

1. MoveDrone- The user should be able to control the movement of the 

drone. Any instruction that the user gives via the controller should be 

received and performed by the drone. It should be able to successfully 

complete each type of movement. This includes rotating clockwise and 

counterclockwise, moving forward/backward, moving up/down and finally 

moving right/ left. So there will be a test for each individual type of 

movement. 

 

2. GetData/GetStatus - The user should be able to receive and view the data 

the drone is transmitting. The battery level should match the device’s battery 

level and update in real time. If it’s below 20%, the text should turn red and a 

low battery alert should be displayed on the website. The location should 

update every few seconds every time the person moves the device and the 

speed should change as well based on the change of location. 

 

3. ViewCamera - The user should be able to receive the video feed from the 

drone. The drone will transmit the video feed from its camera to the website. 

The video input should list all the possible camera options built into the 

device and display the right image (i.e. front and back-facing cameras should 

display the right thing). The video feed should continue to transmit no matter 

what action the drone takes. 

 

4. CheckObstacles- The user should accurately be able to detect any nearby 

obstacles. It should work in all directions that the sensors are facing. Once it 

finds the obstacles, it needs to notify the user of the distance and direction of 

the obstacle. When testing the website directly on the Raspberry Pi, the 

sensor data should update every time the Python script updates the text file. 

65 



 

Like the battery level, the text should turn red to warn the user if they’re 

within a foot (~ 30 cm) from an obstacle. 

 

5. Power- The video feed from the camera should be able to turn on or off 

based on the user’s decision. Once the user decides to turn off the camera 

then the video feed on the web page should then become blank. 

 

6. Display- Runs the interface and shows all the features incorporated into 

the interfaces. This includes the video feed from the cameraーregular and 

thermal and the data values of the drone from the Pi. 

 

B. 
 

ViewCamera​-We ended up testing various approaches to see which version 

would be clear and see how far the range for each approach was. During 

testing, we had two different approaches which were screen sharing and an 

app called Alfred. The test involved establishing a connection between the 

phone and computer and then seeing how far the phone can be taken away 

from the computer and still have a clear image. At first, when both 

approaches were close to the computer, the screen share was very clear and 

Alfred had good clarity. However, the quality of the screen-sharing app 

rapidly decreased as the phone moved away when using screen sharing. 

When it came to Alfred, the quality remained the same for a while, but as the 

phone moved farther and farther away, the quality decreased. This is 

because the phone was starting to go out of range of the wifi. 

 

GetData/GetStatus​-One of the data values that we have tested includes the 

location of the device in use. This was done by running the code for the 

controller in three different locations and seeing that these are in fact 

different in latitude and longitude. The test was conducted in Edison, South 

Brunswick, and East Windsor. As expected each of these values was 

different. In Edison, the values were: Lat: 40.55° and Long: -74.39°. In South 

66 



 

Brunswick, the values were: Lat: 40.38 ° and Long: -74.54°. In East Windsor, 

the values were: Lat: 40.25° and -74.53°.  

 

Display​- We tested the display to check for how the controller responded to 

the user inputs and how fast or slow the latency of the device was. This was 

done by triggering different buttons to observe the behavior of the 

controller. We also checked the controller to see if the different latitude and 

longitude coordinates mentioned above were displayed on the screen for 

three different locations. This was also tested using different devices like a 

laptop, a smartphone, or a tablet. In all of these cases, the live feed was 

present, the buttons were working, and the data from the drone was 

displayed correctly on the screen. 

 

Check Obstacles​- To test the responsiveness of the ultrasonic sensors, we 

set up different test cases and measured the time it took for a signal to be 

outputted from the sensor. This was done by having the sensor emit several 

sound waves at approximately 40 Hz, and then observing the output based 

on the time it took for the wave to reach back to the sensor. This was 

repeated for objects placed in a straight line approximately 1 meter, 2 

meters, and 4 meters away. Although the accuracy of the sensor did slightly 

decrease the further the distance became, it was able to accurately 

determine the distance to within < 5 cm of the target for larger distances and 

< 1 cm for smaller distances. 

 

C. 
We are planning on using the Horizontal Integration method for our testing. 

More specifically we will be using the Top-down integration version for our 

testing purposes. The first test we will have to do is display because the 

controller needs access to the buttons in order to run the rest of the tests. 

Once the display is on the next test will be power. This will turn the drone on 

and allow us to test the functionality of the drone. The next thing that will be 

tested will be ViewCamera. This will allow the user to see the video that the 

drone is transmitting. Once the video feed is working the next step is to see if 

67 



 

the drone can move. A test will be conducted to see that it is possible to 

maneuver the drone in all 6 directions. Once the drone is in operation the 

next step is to test the check obstacles function. This will let the user know if 

there are any obstacles nearby. Once the drone is in stable operation the 

final step would be to use the getData/getStatus to see the properties of the 

drone in action. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

68 



 

 

History of Work, Current Status, and Future Work 

 

Merging the Contributions from Individual Team 
Members 

 

Shantanu came up with the project idea and was able to explain how we could contribute 
to the project during weekly meetings. We decided to split the work into four subgroups: 
image processing, location data, physical data, and obstacles. Since not everyone can 
make it to the weekly meetings, each subgroup has set up their own meeting times to 
discuss specific functionalities to be implemented in this project. This also ensures that 
each person can discuss how they will contribute toward building S.A.R.A. 
 
Krishna Mahadas created and shared the Google Drive for our project so we could easily 
collaborate on creating the reports. 
 
Abhishek manages the GitHub repository to maintain the project code and divide the 
work among the team. Each branch corresponds to the different subgroups. Each person 
works on their subgroup work and when it’s ready to be implemented, it is merged into 
the master branch. 
 
A website is going to be made and developed with relevant updates to the project. This 
will be managed by Abhishek. Other team members will help. 
 
 
 
 
 
 
 
 
 
 
 
 

69 



 

 

 

Project Coordination and Progress Report 

 

Image Processing: 
The image processing component of the project mainly implements the use 

case ViewCamera. So far we have already been able to display what the 

phone camera is seeing on other devices such as a pc. We tried using multiple 

third-party applications and features of the Android phone to see which 

works best. Some third-party applications we tried are Sidesync, Alfred and 

IPwebcam. All of these applications are able to display decent quality video 

feed for a reasonable range using wifi. Another approach was using the 

screen mirroring function of the android. This approach also uses wifi and 

provides a really good quality image. However, it does not have much of the 

range due to the fact the phone needs to be close to where ever the display is 

being transmitted to. So we decided to try using the Alfred application at first 

but later switched to Sidesync.  The Sidesync application allowed us to have a 

better version of screen mirroring and actually control the phone from the 

pc. So we are able to run our interface on the phone and then display it on the 

laptop. This is being done by using the HTML code of the webpage version of 

the application since the camera feed is coming from the phone camera itself. 

A prototype of the controller can be found on our website.  The last aspect of 

image processing was to implement the thermal video feed. This was done 

using a micro usb thermal camera, and once again the Sidesync app is used to 

transfer the thermal feed from the phone to the remote pc. 

 

Location Data:  
The use case that is the main function of location data is GetLocation. We 

already have code for this use case in HTML that provides the location of the 

given device in latitude and longitude form. Since the Sidesync app transfer 

70 



 

the phone screen to the laptop, and the phone is running our interface, the 

location of the phone is transferred to the laptop.  

 
Physical Data:  
The physical data part of the project deals with the GetStatus and GetData 

use cases. It will also include the MoveDrone use case. Due to the hardware 

component of the project, this part of the project was in effect once the 

drone is in full operation. Specifically, this part of the project will depend on 

the use of a Raspberry Pi and the interface.  The physical data component 

uses values from getLocation() to calculate the speed. It is also used to get the 

current battery levels of the device in operation. 

 

Obstacles:  
The Obstacles section of the project deals with the remainder of the use 

cases. The use case for the Obstacles section only includes CheckObstacles. 

Similar to the physical data component, this section was mainly  in effect 

once the drone was working. In the final drone build, we decided to use two 

ultrasonic sensors on the drone to check for nearby obstacles in the left and 

right directions. They utilize the Raspberry Pi and Python to detect the 

obstacles around the drone and store the measured distances in a text file 

that will be read by the webpage and displayed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

71 



 

 
 

 

History of Work 

 
● Milestones: 

○ Drone Camera Transmission:​ Be able to provide a reliable stream 

from the onboard phone camera to a mobile device set aside to 

mock the operator’s control device. 

■ Date of Completion: March 8th, 2019 

○ Hardware-Associated Tasks:​ After all necessary hardware 

components arrive between March 1st-3rd, the construction of 

the drone frame to fit the needs of the project. This includes 

mounting the camera to the drone frame. 

■ Date of Completion: April 21st, 2019 

○ Webpage Integration:​ Collecting all relevant data and finalizing 

transmission/display of said data to the operator’s webpage. 

■ Date of Completion: March 22nd, 2019 

○ Sensors:​ Managed to get the sensors incorporated with the 

Raspberry Pi and be able to record the distance from an object. 

■ Date of Completion: April 21st, 2019 

 

The milestones that have been completed so far and the planned milestone 

achievements so far are slightly different from each other. We initially 

experienced delays in receiving the hardware components on time so we 

could not meet up some of the expected milestones on the hardware side. 

We did manage to complete several of the other planned achievements on 

time. These achievements included getting the video feed from the mobile’s 

camera and getting the webpage integration done on time. 

The future plans for this project will be focused more on integrating 

everything around the drone and making sure that the various subsystems 

72 



 

can work in cohesion. All future work for this project is going to be focused 

on the drone itself and not on the systems that utilize the drone or that can 

be placed on the drone. 

 

Key Accomplishments: 

● Webpage Integration 

● Camera Transmission 

● Getting location and calculating the speed 

● Getting the infrared camera 

● Connecting the sensors onto the Raspberry Pi 

● Writing frequent readings of sensors into a file 

● AJAX connection from sensor data to the website 

 

 

 

 

 

 

 

 

 

 

 

 
 

73 



 

 

Breakdown of Responsibilities 

 

● Project divisions:(all tasks that are in progress/to be completed) 

○ Visual Data Processing: 

■ Shantanu: Management of the main wireless 

network/communication of data. Also responsible for the 

bringing most of the hardware for the drone.  

■ Abhishek: Webpage development/Data handling on 

operator-side  

■ Krishna Mahadas: Onboard camera handling, transmission  

○ Obstacle Management 

■ Vishal: Managing sensor data, implementing 

detection/assoc. movement 

○ Location Data 

■ Avnish: Gathering onboard GPS data, transmission 

○ Physical Drone Data 

■ Krishna Tottempudi: Determining overall operational 

status from the collected data.  

■ Sahana: Determining power levels/operational lifespan of 

drone real-time 

■ Won Seok: Determining the strength of signal/connection 

to the operator 

 

All other contributions to the project can be found in the individual 

contributions breakdown matrix on page 2. 

 

 
 
 

74 



 

 

References 
1. “Drone Sense” 

https://www.dronesense.com/?gclid=EAIaIQobChMIqo-45_Gx4AIVwoCfCh2CbA
0QEAAYASAAEgKMu_D_BwE 

2. Byran, Cantfil. “ United States Coast Guard Search and Rescue Summary Statistics 
1964 thru 2015.” 
https://www.dco.uscg.mil/Portals/9/CG-5R/SARfactsInfo/SAR%20Sum%20Stats
%2064-16.pdf 

3. Rhode, Steve.“DRONE SEARCH-AND-RESCUE STUDY REVEALS POTENTIAL, 
LIMITS” 
https://www.aopa.org/news-and-media/all-news/2018/october/01/drone-study-r
eveals-potential-and-limits 

4. “Image 1” 
https://s.yimg.com/ny/api/res/1.2/2P8Y6UqlB8dKOiVIg9Rscg--~A/YXBwaWQ9a
GlnaGxhbmRlcjtzbT0xO3c9ODAw/http://media.zenfs.com/en-US/homerun/digit
al_trends_973/8122e594705a009db372bf32720d9fe9 

5. “Using a Raspberry Pi distance sensor (ultrasonic sensor HC-SR04).” 
https://tutorials-Raspberrypi.com/Raspberry-pi-ultrasonic-sensor-hc-sr04/ 

6. “Raspberry Pi Distance Sensor: How to set up the HC-SR04” 
https://pimylifeup.com/Raspberry-pi-distance-sensor​/ 

7. “HC-SR04 Ultrasonic Range Sensor on the Raspberry Pi” 
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-Raspber
ry-pi 

8. “Installing GPIO” 
https://gpiozero.readthedocs.io/en/stable/installing.html 

9. “The Equations for Speed” 
https://quadstardrones.com/the-equations-for-speed/ 

10. “Implementing an in-browser camera” 
https://davidwalsh.name/browser-camera 

11. “Tracking current location” 
https://www.w3schools.com/html/html5_geolocation.asp 

 
 

75 

https://www.dronesense.com/?gclid=EAIaIQobChMIqo-45_Gx4AIVwoCfCh2CbA0QEAAYASAAEgKMu_D_BwE&fbclid=IwAR3DqethzWJijBZxyXBlNiOGh9HX8zBOH5Kdv-NpY9JHJiRExIVEcfeOqns
https://www.dronesense.com/?gclid=EAIaIQobChMIqo-45_Gx4AIVwoCfCh2CbA0QEAAYASAAEgKMu_D_BwE&fbclid=IwAR3DqethzWJijBZxyXBlNiOGh9HX8zBOH5Kdv-NpY9JHJiRExIVEcfeOqns
https://www.dco.uscg.mil/Portals/9/CG-5R/SARfactsInfo/SAR%20Sum%20Stats%2064-16.pdf
https://www.dco.uscg.mil/Portals/9/CG-5R/SARfactsInfo/SAR%20Sum%20Stats%2064-16.pdf
https://www.aopa.org/news-and-media/all-news/2018/october/01/drone-study-reveals-potential-and-limits
https://www.aopa.org/news-and-media/all-news/2018/october/01/drone-study-reveals-potential-and-limits
https://s.yimg.com/ny/api/res/1.2/2P8Y6UqlB8dKOiVIg9Rscg--~A/YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9ODAw/http://media.zenfs.com/en-US/homerun/digital_trends_973/8122e594705a009db372bf32720d9fe9
https://s.yimg.com/ny/api/res/1.2/2P8Y6UqlB8dKOiVIg9Rscg--~A/YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9ODAw/http://media.zenfs.com/en-US/homerun/digital_trends_973/8122e594705a009db372bf32720d9fe9
https://s.yimg.com/ny/api/res/1.2/2P8Y6UqlB8dKOiVIg9Rscg--~A/YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9ODAw/http://media.zenfs.com/en-US/homerun/digital_trends_973/8122e594705a009db372bf32720d9fe9
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://pimylifeup.com/raspberry-pi-distance-sensor
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://gpiozero.readthedocs.io/en/stable/installing.html
https://quadstardrones.com/the-equations-for-speed/
https://davidwalsh.name/browser-camera
https://www.w3schools.com/html/html5_geolocation.asp

